MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. SAE-AISI 1040 Steel

Grade 5 titanium belongs to the titanium alloys classification, while SAE-AISI 1040 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is SAE-AISI 1040 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
13 to 20
Fatigue Strength, MPa 530 to 630
220 to 340
Poisson's Ratio 0.32
0.29
Reduction in Area, % 21 to 25
40 to 45
Shear Modulus, GPa 40
73
Shear Strength, MPa 600 to 710
350 to 390
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
570 to 640
Tensile Strength: Yield (Proof), MPa 910 to 1110
320 to 530

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
51
Thermal Expansion, µm/m-K 8.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
18
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
79 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
270 to 760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
20 to 23
Strength to Weight: Bending, points 50 to 56
19 to 21
Thermal Diffusivity, mm2/s 2.7
14
Thermal Shock Resistance, points 76 to 91
18 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.37 to 0.44
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
98.6 to 99.03
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0