MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. SAE-AISI 52100 Steel

Grade 5 titanium belongs to the titanium alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
10 to 20
Fatigue Strength, MPa 530 to 630
250 to 340
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Shear Strength, MPa 600 to 710
370 to 420
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
590 to 2010
Tensile Strength: Yield (Proof), MPa 910 to 1110
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
430
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1650
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
47
Thermal Expansion, µm/m-K 8.9
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.4
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.5
Embodied Energy, MJ/kg 610
20
Embodied Water, L/kg 200
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
350 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
21 to 72
Strength to Weight: Bending, points 50 to 56
20 to 45
Thermal Diffusivity, mm2/s 2.7
13
Thermal Shock Resistance, points 76 to 91
19 to 61

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.93 to 1.1
Chromium (Cr), % 0
1.4 to 1.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
96.5 to 97.3
Manganese (Mn), % 0
0.25 to 0.45
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants