MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C49300 Brass

Grade 5 titanium belongs to the titanium alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 8.6 to 11
4.5 to 20
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Shear Strength, MPa 600 to 710
270 to 290
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
430 to 520
Tensile Strength: Yield (Proof), MPa 910 to 1110
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 330
120
Melting Completion (Liquidus), °C 1610
880
Melting Onset (Solidus), °C 1650
840
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 6.8
88
Thermal Expansion, µm/m-K 8.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
26
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
3.0
Embodied Energy, MJ/kg 610
50
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62 to 75
15 to 18
Strength to Weight: Bending, points 50 to 56
16 to 18
Thermal Diffusivity, mm2/s 2.7
29
Thermal Shock Resistance, points 76 to 91
14 to 18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 62
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5