MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C70700 Copper-nickel

Grade 5 titanium belongs to the titanium alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.6 to 11
39
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
46
Shear Strength, MPa 600 to 710
220
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
320
Tensile Strength: Yield (Proof), MPa 910 to 1110
110

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 330
220
Melting Completion (Liquidus), °C 1610
1120
Melting Onset (Solidus), °C 1650
1060
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 6.8
59
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
34
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
3.4
Embodied Energy, MJ/kg 610
52
Embodied Water, L/kg 200
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62 to 75
10
Strength to Weight: Bending, points 50 to 56
12
Thermal Diffusivity, mm2/s 2.7
17
Thermal Shock Resistance, points 76 to 91
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
88.5 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.050
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0
0 to 0.5