MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C83400 Brass

Grade 5 titanium belongs to the titanium alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.6 to 11
30
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
240
Tensile Strength: Yield (Proof), MPa 910 to 1110
69

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1610
1040
Melting Onset (Solidus), °C 1650
1020
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 6.8
190
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.7
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
43
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
55
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62 to 75
7.7
Strength to Weight: Bending, points 50 to 56
9.9
Thermal Diffusivity, mm2/s 2.7
57
Thermal Shock Resistance, points 76 to 91
8.4

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
88 to 92
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7