MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C84200 Brass

Grade 5 titanium belongs to the titanium alloys classification, while C84200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.6 to 11
15
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
250
Tensile Strength: Yield (Proof), MPa 910 to 1110
120

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
150
Melting Completion (Liquidus), °C 1610
990
Melting Onset (Solidus), °C 1650
840
Specific Heat Capacity, J/kg-K 560
370
Thermal Conductivity, W/m-K 6.8
72
Thermal Expansion, µm/m-K 8.9
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.4
8.5
Embodied Carbon, kg CO2/kg material 38
3.1
Embodied Energy, MJ/kg 610
51
Embodied Water, L/kg 200
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
31
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62 to 75
8.2
Strength to Weight: Bending, points 50 to 56
10
Thermal Diffusivity, mm2/s 2.7
23
Thermal Shock Resistance, points 76 to 91
9.1

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
78 to 82
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Nickel (Ni), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
10 to 16
Residuals, % 0
0 to 0.7