MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. C96400 Copper-nickel

Grade 5 titanium belongs to the titanium alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 8.6 to 11
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
51
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
490
Tensile Strength: Yield (Proof), MPa 910 to 1110
260

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 330
260
Melting Completion (Liquidus), °C 1610
1240
Melting Onset (Solidus), °C 1650
1170
Specific Heat Capacity, J/kg-K 560
400
Thermal Conductivity, W/m-K 6.8
28
Thermal Expansion, µm/m-K 8.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
45
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
5.9
Embodied Energy, MJ/kg 610
87
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62 to 75
15
Strength to Weight: Bending, points 50 to 56
16
Thermal Diffusivity, mm2/s 2.7
7.8
Thermal Shock Resistance, points 76 to 91
17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Copper (Cu), % 0
62.3 to 71.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0
0 to 0.5