MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. N06007 Nickel

Grade 5 titanium belongs to the titanium alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
38
Fatigue Strength, MPa 530 to 630
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 600 to 710
470
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
690
Tensile Strength: Yield (Proof), MPa 910 to 1110
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
990
Melting Completion (Liquidus), °C 1610
1340
Melting Onset (Solidus), °C 1650
1260
Specific Heat Capacity, J/kg-K 560
450
Thermal Conductivity, W/m-K 6.8
10
Thermal Expansion, µm/m-K 8.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.4
8.4
Embodied Carbon, kg CO2/kg material 38
10
Embodied Energy, MJ/kg 610
140
Embodied Water, L/kg 200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
170
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62 to 75
23
Strength to Weight: Bending, points 50 to 56
21
Thermal Diffusivity, mm2/s 2.7
2.7
Thermal Shock Resistance, points 76 to 91
18

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0
1.5 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
18 to 21
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0 to 0.050
0.15 to 0.25
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0