MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. N08925 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
45
Fatigue Strength, MPa 530 to 630
310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 600 to 710
470
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
680
Tensile Strength: Yield (Proof), MPa 910 to 1110
340

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1410
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 6.8
13
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.4
8.1
Embodied Carbon, kg CO2/kg material 38
6.2
Embodied Energy, MJ/kg 610
84
Embodied Water, L/kg 200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
23
Strength to Weight: Bending, points 50 to 56
21
Thermal Diffusivity, mm2/s 2.7
3.5
Thermal Shock Resistance, points 76 to 91
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.8 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
42.7 to 50.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0 to 0.050
0.1 to 0.2
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0