MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. N10675 Nickel

Grade 5 titanium belongs to the titanium alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 8.6 to 11
47
Fatigue Strength, MPa 530 to 630
350
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
85
Shear Strength, MPa 600 to 710
610
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
860
Tensile Strength: Yield (Proof), MPa 910 to 1110
400

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
910
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1650
1370
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 6.8
11
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
80
Density, g/cm3 4.4
9.3
Embodied Carbon, kg CO2/kg material 38
16
Embodied Energy, MJ/kg 610
210
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
330
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 62 to 75
26
Strength to Weight: Bending, points 50 to 56
22
Thermal Diffusivity, mm2/s 2.7
3.1
Thermal Shock Resistance, points 76 to 91
26

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 87.4 to 91
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 3.5 to 4.5
0 to 0.2
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0