MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. S35500 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.6 to 11
14
Fatigue Strength, MPa 530 to 630
690 to 730
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 33
33 to 42
Shear Modulus, GPa 40
78
Shear Strength, MPa 600 to 710
810 to 910
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
1330 to 1490
Tensile Strength: Yield (Proof), MPa 910 to 1110
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
870
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
16
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
3.5
Embodied Energy, MJ/kg 610
47
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
3610 to 4100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62 to 75
47 to 53
Strength to Weight: Bending, points 50 to 56
34 to 37
Thermal Diffusivity, mm2/s 2.7
4.4
Thermal Shock Resistance, points 76 to 91
44 to 49

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
73.2 to 77.7
Manganese (Mn), % 0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0 to 0.050
0.070 to 0.13
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0

Comparable Variants