MakeItFrom.com
Menu (ESC)

Grade 7 Titanium vs. SAE-AISI 1140 Steel

Grade 7 titanium belongs to the titanium alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 7 titanium and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 24
14 to 18
Fatigue Strength, MPa 250
230 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
39 to 46
Shear Modulus, GPa 38
72
Shear Strength, MPa 270
370 to 420
Tensile Strength: Ultimate (UTS), MPa 420
600 to 700
Tensile Strength: Yield (Proof), MPa 340
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 22
51
Thermal Expansion, µm/m-K 9.2
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 47
1.4
Embodied Energy, MJ/kg 800
18
Embodied Water, L/kg 470
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 560
310 to 870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 26
21 to 25
Strength to Weight: Bending, points 28
20 to 22
Thermal Diffusivity, mm2/s 8.9
14
Thermal Shock Resistance, points 31
18 to 21

Alloy Composition

Carbon (C), % 0 to 0.080
0.37 to 0.44
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.4 to 98.9
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 98.7 to 99.88
0
Residuals, % 0 to 0.4
0