MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. ACI-ASTM CN3M Steel

Grade 9 titanium belongs to the titanium alloys classification, while ACI-ASTM CN3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
34
Fatigue Strength, MPa 330 to 480
150
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 700 to 960
500
Tensile Strength: Yield (Proof), MPa 540 to 830
190

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
13
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 36
5.9
Embodied Energy, MJ/kg 580
80
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
17
Strength to Weight: Bending, points 39 to 48
17
Thermal Diffusivity, mm2/s 3.3
3.4
Thermal Shock Resistance, points 52 to 71
11

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
20 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
42.4 to 52.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
23 to 27
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0