MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. ASTM A182 Grade F3V

Grade 9 titanium belongs to the titanium alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
20
Fatigue Strength, MPa 330 to 480
330
Poisson's Ratio 0.32
0.29
Reduction in Area, % 28
51
Shear Modulus, GPa 40
74
Shear Strength, MPa 430 to 580
410
Tensile Strength: Ultimate (UTS), MPa 700 to 960
660
Tensile Strength: Yield (Proof), MPa 540 to 830
470

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
470
Melting Completion (Liquidus), °C 1640
1470
Melting Onset (Solidus), °C 1590
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
39
Thermal Expansion, µm/m-K 9.1
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
4.2
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
2.3
Embodied Energy, MJ/kg 580
33
Embodied Water, L/kg 150
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
23
Strength to Weight: Bending, points 39 to 48
21
Thermal Diffusivity, mm2/s 3.3
10
Thermal Shock Resistance, points 52 to 71
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0 to 0.080
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
94.4 to 95.7
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.6 to 95.5
0.015 to 0.035
Vanadium (V), % 2.0 to 3.0
0.2 to 0.3
Residuals, % 0 to 0.4
0