MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. AWS BNi-4

Grade 9 titanium belongs to the titanium alloys classification, while AWS BNi-4 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is AWS BNi-4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
180
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
67
Tensile Strength: Ultimate (UTS), MPa 700 to 960
430

Thermal Properties

Latent Heat of Fusion, J/g 410
340
Melting Completion (Liquidus), °C 1640
1070
Melting Onset (Solidus), °C 1590
980
Specific Heat Capacity, J/kg-K 550
470
Thermal Expansion, µm/m-K 9.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
60
Density, g/cm3 4.5
8.5
Embodied Carbon, kg CO2/kg material 36
10
Embodied Energy, MJ/kg 580
140
Embodied Water, L/kg 150
220

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 43 to 60
14
Strength to Weight: Bending, points 39 to 48
15
Thermal Shock Resistance, points 52 to 71
16

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.050
Boron (B), % 0
1.5 to 2.2
Carbon (C), % 0 to 0.080
0 to 0.060
Cobalt (Co), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.5
Nickel (Ni), % 0
91.4 to 95.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.6 to 95.5
0 to 0.050
Vanadium (V), % 2.0 to 3.0
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5