MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. EN 1.4872 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
28
Fatigue Strength, MPa 330 to 480
410
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 430 to 580
620
Tensile Strength: Ultimate (UTS), MPa 700 to 960
950
Tensile Strength: Yield (Proof), MPa 540 to 830
560

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1150
Melting Completion (Liquidus), °C 1640
1390
Melting Onset (Solidus), °C 1590
1340
Specific Heat Capacity, J/kg-K 550
490
Thermal Conductivity, W/m-K 8.1
15
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
17
Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 36
3.3
Embodied Energy, MJ/kg 580
47
Embodied Water, L/kg 150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
780
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 43 to 60
35
Strength to Weight: Bending, points 39 to 48
28
Thermal Diffusivity, mm2/s 3.3
3.9
Thermal Shock Resistance, points 52 to 71
21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
54.2 to 61.6
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.2 to 0.4
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0