MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. EN AC-21200 Aluminum

Grade 9 titanium belongs to the titanium alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 11 to 17
3.9 to 6.2
Fatigue Strength, MPa 330 to 480
110 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 700 to 960
410 to 440
Tensile Strength: Yield (Proof), MPa 540 to 830
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
660
Melting Onset (Solidus), °C 1590
550
Specific Heat Capacity, J/kg-K 550
880
Thermal Conductivity, W/m-K 8.1
130
Thermal Expansion, µm/m-K 9.1
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 4.5
3.0
Embodied Carbon, kg CO2/kg material 36
8.0
Embodied Energy, MJ/kg 580
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
500 to 930
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 43 to 60
38 to 40
Strength to Weight: Bending, points 39 to 48
41 to 43
Thermal Diffusivity, mm2/s 3.3
49
Thermal Shock Resistance, points 52 to 71
18 to 19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
93.3 to 95.7
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 92.6 to 95.5
0 to 0.1
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1