MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. CC765S Brass

Grade 9 titanium belongs to the titanium alloys classification, while CC765S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is CC765S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
21
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 700 to 960
540
Tensile Strength: Yield (Proof), MPa 540 to 830
220

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 330
140
Melting Completion (Liquidus), °C 1640
860
Melting Onset (Solidus), °C 1590
820
Specific Heat Capacity, J/kg-K 550
400
Thermal Conductivity, W/m-K 8.1
91
Thermal Expansion, µm/m-K 9.1
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
34

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
3.0
Embodied Energy, MJ/kg 580
51
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
220
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 43 to 60
19
Strength to Weight: Bending, points 39 to 48
18
Thermal Diffusivity, mm2/s 3.3
28
Thermal Shock Resistance, points 52 to 71
17

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0.5 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
51 to 65
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.5 to 2.0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
0.3 to 3.0
Nickel (Ni), % 0
0 to 6.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
19.8 to 47.7
Residuals, % 0 to 0.4
0