Grade 9 Titanium vs. Nickel 600
Grade 9 titanium belongs to the titanium alloys classification, while nickel 600 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is grade 9 titanium and the bottom bar is nickel 600.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 11 to 17 | |
3.4 to 35 |
Fatigue Strength, MPa | 330 to 480 | |
220 to 300 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 40 | |
75 |
Shear Strength, MPa | 430 to 580 | |
430 to 570 |
Tensile Strength: Ultimate (UTS), MPa | 700 to 960 | |
650 to 990 |
Tensile Strength: Yield (Proof), MPa | 540 to 830 | |
270 to 760 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
310 |
Maximum Temperature: Mechanical, °C | 330 | |
1100 |
Melting Completion (Liquidus), °C | 1640 | |
1410 |
Melting Onset (Solidus), °C | 1590 | |
1350 |
Specific Heat Capacity, J/kg-K | 550 | |
460 |
Thermal Conductivity, W/m-K | 8.1 | |
14 |
Thermal Expansion, µm/m-K | 9.1 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.4 | |
1.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
1.8 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 37 | |
55 |
Density, g/cm3 | 4.5 | |
8.5 |
Embodied Carbon, kg CO2/kg material | 36 | |
9.0 |
Embodied Energy, MJ/kg | 580 | |
130 |
Embodied Water, L/kg | 150 | |
250 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 89 to 110 | |
31 to 180 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1380 to 3220 | |
190 to 1490 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
23 |
Strength to Weight: Axial, points | 43 to 60 | |
21 to 32 |
Strength to Weight: Bending, points | 39 to 48 | |
20 to 26 |
Thermal Diffusivity, mm2/s | 3.3 | |
3.6 |
Thermal Shock Resistance, points | 52 to 71 | |
19 to 29 |
Alloy Composition
Aluminum (Al), % | 2.5 to 3.5 | |
0 |
Carbon (C), % | 0 to 0.080 | |
0 to 0.15 |
Chromium (Cr), % | 0 | |
14 to 17 |
Copper (Cu), % | 0 | |
0 to 0.5 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.25 | |
6.0 to 10 |
Manganese (Mn), % | 0 | |
0 to 1.0 |
Nickel (Ni), % | 0 | |
72 to 80 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.15 | |
0 |
Silicon (Si), % | 0 | |
0 to 0.5 |
Sulfur (S), % | 0 | |
0 to 0.015 |
Titanium (Ti), % | 92.6 to 95.5 | |
0 |
Vanadium (V), % | 2.0 to 3.0 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |