MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. C42200 Brass

Grade 9 titanium belongs to the titanium alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11 to 17
2.0 to 46
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Shear Strength, MPa 430 to 580
210 to 350
Tensile Strength: Ultimate (UTS), MPa 700 to 960
300 to 610
Tensile Strength: Yield (Proof), MPa 540 to 830
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
1040
Melting Onset (Solidus), °C 1590
1020
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.1
130
Thermal Expansion, µm/m-K 9.1
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 36
2.7
Embodied Energy, MJ/kg 580
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 60
9.5 to 19
Strength to Weight: Bending, points 39 to 48
11 to 18
Thermal Diffusivity, mm2/s 3.3
39
Thermal Shock Resistance, points 52 to 71
10 to 21

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.35
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5