MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. C96200 Copper-nickel

Grade 9 titanium belongs to the titanium alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
23
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 700 to 960
350
Tensile Strength: Yield (Proof), MPa 540 to 830
190

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 330
220
Melting Completion (Liquidus), °C 1640
1150
Melting Onset (Solidus), °C 1590
1100
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.1
45
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
36
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 36
3.8
Embodied Energy, MJ/kg 580
58
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
68
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 60
11
Strength to Weight: Bending, points 39 to 48
13
Thermal Diffusivity, mm2/s 3.3
13
Thermal Shock Resistance, points 52 to 71
12

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.1
Copper (Cu), % 0
83.6 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.5