MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. C96800 Copper

Grade 9 titanium belongs to the titanium alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11 to 17
3.4
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 700 to 960
1010
Tensile Strength: Yield (Proof), MPa 540 to 830
860

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 330
220
Melting Completion (Liquidus), °C 1640
1120
Melting Onset (Solidus), °C 1590
1060
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.1
52
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 37
34
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 36
3.4
Embodied Energy, MJ/kg 580
52
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 43 to 60
32
Strength to Weight: Bending, points 39 to 48
25
Thermal Diffusivity, mm2/s 3.3
15
Thermal Shock Resistance, points 52 to 71
35

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
87.1 to 90.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.0025
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5