MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. N06250 Nickel

Grade 9 titanium belongs to the titanium alloys classification, while N06250 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is N06250 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11 to 17
46
Fatigue Strength, MPa 330 to 480
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
82
Shear Strength, MPa 430 to 580
500
Tensile Strength: Ultimate (UTS), MPa 700 to 960
710
Tensile Strength: Yield (Proof), MPa 540 to 830
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
980
Melting Completion (Liquidus), °C 1640
1490
Melting Onset (Solidus), °C 1590
1440
Specific Heat Capacity, J/kg-K 550
440
Thermal Expansion, µm/m-K 9.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
55
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 36
10
Embodied Energy, MJ/kg 580
140
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 43 to 60
23
Strength to Weight: Bending, points 39 to 48
21
Thermal Shock Resistance, points 52 to 71
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0
0.25 to 1.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
7.4 to 19.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
10.1 to 12
Nickel (Ni), % 0
50 to 54
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.090
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 92.6 to 95.5
0
Tungsten (W), % 0
0.25 to 1.3
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0