MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. N08024 Nickel

Grade 9 titanium belongs to the titanium alloys classification, while N08024 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
34
Fatigue Strength, MPa 330 to 480
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 430 to 580
410
Tensile Strength: Ultimate (UTS), MPa 700 to 960
620
Tensile Strength: Yield (Proof), MPa 540 to 830
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
990
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1380
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 8.1
12
Thermal Expansion, µm/m-K 9.1
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
41
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 36
7.2
Embodied Energy, MJ/kg 580
99
Embodied Water, L/kg 150
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
21
Strength to Weight: Bending, points 39 to 48
20
Thermal Diffusivity, mm2/s 3.3
3.2
Thermal Shock Resistance, points 52 to 71
15

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
26.6 to 38.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0