MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. N08330 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
34
Fatigue Strength, MPa 330 to 480
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 430 to 580
360
Tensile Strength: Ultimate (UTS), MPa 700 to 960
550
Tensile Strength: Yield (Proof), MPa 540 to 830
230

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1050
Melting Completion (Liquidus), °C 1640
1390
Melting Onset (Solidus), °C 1590
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.1
12
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
32
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
5.4
Embodied Energy, MJ/kg 580
77
Embodied Water, L/kg 150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
19
Strength to Weight: Bending, points 39 to 48
18
Thermal Diffusivity, mm2/s 3.3
3.1
Thermal Shock Resistance, points 52 to 71
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0