MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. S31254 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
40
Fatigue Strength, MPa 330 to 480
290
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
56
Shear Modulus, GPa 40
80
Shear Strength, MPa 430 to 580
490
Tensile Strength: Ultimate (UTS), MPa 700 to 960
720
Tensile Strength: Yield (Proof), MPa 540 to 830
330

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1090
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 8.1
14
Thermal Expansion, µm/m-K 9.1
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 36
5.5
Embodied Energy, MJ/kg 580
74
Embodied Water, L/kg 150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
25
Strength to Weight: Bending, points 39 to 48
22
Thermal Diffusivity, mm2/s 3.3
3.8
Thermal Shock Resistance, points 52 to 71
15

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 0
0.5 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
51.4 to 56.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0 to 0.030
0.18 to 0.22
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0