MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. S44625 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
22
Fatigue Strength, MPa 330 to 480
240
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Shear Strength, MPa 430 to 580
370
Tensile Strength: Ultimate (UTS), MPa 700 to 960
590
Tensile Strength: Yield (Proof), MPa 540 to 830
360

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.1
17
Thermal Expansion, µm/m-K 9.1
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.8
Embodied Energy, MJ/kg 580
39
Embodied Water, L/kg 150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
310
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 60
21
Strength to Weight: Bending, points 39 to 48
20
Thermal Diffusivity, mm2/s 3.3
4.6
Thermal Shock Resistance, points 52 to 71
19

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
69.4 to 74.3
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0 to 0.015
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0