MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. C12500 Copper

Grade C-2 titanium belongs to the titanium alloys classification, while C12500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
1.5 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 390
220 to 420
Tensile Strength: Yield (Proof), MPa 310
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1070
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
350
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
92
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
93

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 510
41
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 460
24 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
6.9 to 13
Strength to Weight: Bending, points 26
9.1 to 14
Thermal Diffusivity, mm2/s 8.8
100
Thermal Shock Resistance, points 30
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
99.88 to 100
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0
0 to 0.0040
Nickel (Ni), % 0 to 0.050
0 to 0.050
Oxygen (O), % 0 to 0.4
0
Tellurium (Te), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0
0 to 0.3