MakeItFrom.com
Menu (ESC)

M1A Magnesium vs. EN 1.4935 Stainless Steel

M1A magnesium belongs to the magnesium alloys classification, while EN 1.4935 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is M1A magnesium and the bottom bar is EN 1.4935 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.5
16 to 18
Fatigue Strength, MPa 88
350 to 400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 120
480 to 540
Tensile Strength: Ultimate (UTS), MPa 230
780 to 880
Tensile Strength: Yield (Proof), MPa 130
570 to 670

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 95
740
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 150
24
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 190
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 24
2.9
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 970
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
830 to 1160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 38
28 to 31
Strength to Weight: Bending, points 49
24 to 26
Thermal Diffusivity, mm2/s 88
6.5
Thermal Shock Resistance, points 13
27 to 30

Alloy Composition

Calcium (Ca), % 0 to 0.3
0
Carbon (C), % 0
0.17 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0
83 to 86.7
Magnesium (Mg), % 97.2 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0.3 to 0.8
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.010
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0.1 to 0.5
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0.2 to 0.35
Residuals, % 0 to 0.3
0