MakeItFrom.com
Menu (ESC)

Monel 400 vs. C87800 Brass

Monel 400 belongs to the nickel alloys classification, while C87800 brass belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is Monel 400 and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 20 to 40
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 62
42
Tensile Strength: Ultimate (UTS), MPa 540 to 780
590
Tensile Strength: Yield (Proof), MPa 210 to 590
350

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
920
Melting Onset (Solidus), °C 1300
820
Specific Heat Capacity, J/kg-K 430
410
Thermal Conductivity, W/m-K 23
28
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 50
27
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 110
44
Embodied Water, L/kg 250
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1080
540
Stiffness to Weight: Axial, points 10
7.4
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 17 to 25
20
Strength to Weight: Bending, points 17 to 21
19
Thermal Diffusivity, mm2/s 6.1
8.3
Thermal Shock Resistance, points 17 to 25
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 28 to 34
80 to 84.2
Iron (Fe), % 0 to 2.5
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.15
Nickel (Ni), % 63 to 72
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.5
3.8 to 4.2
Sulfur (S), % 0 to 0.024
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5