MakeItFrom.com
Menu (ESC)

Nickel 200 vs. 3104 Aluminum

Nickel 200 belongs to the nickel alloys classification, while 3104 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 200 and the bottom bar is 3104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
70
Elongation at Break, % 23 to 44
1.1 to 20
Fatigue Strength, MPa 120 to 350
74 to 130
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 300 to 340
110 to 180
Tensile Strength: Ultimate (UTS), MPa 420 to 540
170 to 310
Tensile Strength: Yield (Proof), MPa 120 to 370
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1440
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 69
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
41
Electrical Conductivity: Equal Weight (Specific), % IACS 18
130

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 11
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 230
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
1.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 370
34 to 540
Stiffness to Weight: Axial, points 11
14
Stiffness to Weight: Bending, points 21
50
Strength to Weight: Axial, points 13 to 17
17 to 31
Strength to Weight: Bending, points 14 to 17
25 to 37
Thermal Diffusivity, mm2/s 17
64
Thermal Shock Resistance, points 13 to 16
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
95.1 to 98.4
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0.050 to 0.25
Gallium (Ga), % 0
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.8
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0 to 0.35
0.8 to 1.4
Nickel (Ni), % 99 to 100
0
Silicon (Si), % 0 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants