MakeItFrom.com
Menu (ESC)

Nickel 333 vs. S21640 Stainless Steel

Nickel 333 belongs to the nickel alloys classification, while S21640 stainless steel belongs to the iron alloys. They have 43% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 420
520
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1010
940
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
17
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 8.5
3.6
Embodied Energy, MJ/kg 120
51
Embodied Water, L/kg 270
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
280
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21
27
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 24 to 27
17.5 to 19.5
Cobalt (Co), % 2.5 to 4.0
0
Iron (Fe), % 9.3 to 24.5
63 to 74.3
Manganese (Mn), % 0 to 2.0
3.5 to 6.5
Molybdenum (Mo), % 2.5 to 4.0
0.5 to 2.0
Nickel (Ni), % 44 to 48
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0 to 0.030
0 to 0.060
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 2.5 to 4.0
0