MakeItFrom.com
Menu (ESC)

Nickel 600 vs. Grade 25 Titanium

Nickel 600 belongs to the nickel alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 3.4 to 35
11
Fatigue Strength, MPa 220 to 300
550
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
40
Shear Strength, MPa 430 to 570
600
Tensile Strength: Ultimate (UTS), MPa 650 to 990
1000
Tensile Strength: Yield (Proof), MPa 270 to 760
940

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1410
1610
Melting Onset (Solidus), °C 1350
1560
Specific Heat Capacity, J/kg-K 460
560
Thermal Conductivity, W/m-K 14
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 9.0
43
Embodied Energy, MJ/kg 130
700
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
4220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 21 to 32
62
Strength to Weight: Bending, points 20 to 26
50
Thermal Diffusivity, mm2/s 3.6
2.8
Thermal Shock Resistance, points 19 to 29
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 6.0 to 10
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4