MakeItFrom.com
Menu (ESC)

Nickel 617 vs. Grade 9 Titanium

Nickel 617 belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 40
11 to 17
Fatigue Strength, MPa 220
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 80
40
Shear Strength, MPa 510
430 to 580
Tensile Strength: Ultimate (UTS), MPa 740
700 to 960
Tensile Strength: Yield (Proof), MPa 280
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1010
330
Melting Completion (Liquidus), °C 1380
1640
Melting Onset (Solidus), °C 1330
1590
Specific Heat Capacity, J/kg-K 450
550
Thermal Conductivity, W/m-K 13
8.1
Thermal Expansion, µm/m-K 12
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 75
37
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 10
36
Embodied Energy, MJ/kg 140
580
Embodied Water, L/kg 350
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 24
43 to 60
Strength to Weight: Bending, points 21
39 to 48
Thermal Diffusivity, mm2/s 3.5
3.3
Thermal Shock Resistance, points 21
52 to 71

Alloy Composition

Aluminum (Al), % 0.8 to 1.5
2.5 to 3.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0 to 0.080
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 3.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4