MakeItFrom.com
Menu (ESC)

Nickel 625 vs. EN 1.4301 Stainless Steel

Nickel 625 belongs to the nickel alloys classification, while EN 1.4301 stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is EN 1.4301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 33 to 34
14 to 46
Fatigue Strength, MPa 240 to 320
200 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 530 to 600
430 to 550
Tensile Strength: Ultimate (UTS), MPa 790 to 910
610 to 900
Tensile Strength: Yield (Proof), MPa 320 to 450
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 980
940
Melting Completion (Liquidus), °C 1350
1430
Melting Onset (Solidus), °C 1290
1380
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 80
15
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
3.0
Embodied Energy, MJ/kg 190
43
Embodied Water, L/kg 290
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
110 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
120 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26 to 29
22 to 32
Strength to Weight: Bending, points 22 to 24
20 to 27
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 22 to 25
14 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 20 to 23
17.5 to 19.5
Cobalt (Co), % 0 to 1.0
0
Iron (Fe), % 0 to 5.0
66.8 to 74.5
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
8.0 to 10.5
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.4
0

Comparable Variants