MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C11400 Copper

Nickel 625 belongs to the nickel alloys classification, while C11400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 33 to 34
2.8 to 51
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 530 to 600
150 to 210
Tensile Strength: Ultimate (UTS), MPa 790 to 910
220 to 400
Tensile Strength: Yield (Proof), MPa 320 to 450
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1350
1080
Melting Onset (Solidus), °C 1290
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
100
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 80
32
Density, g/cm3 8.6
9.0
Embodied Carbon, kg CO2/kg material 14
2.6
Embodied Energy, MJ/kg 190
42
Embodied Water, L/kg 290
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
6.8 to 12
Strength to Weight: Bending, points 22 to 24
9.1 to 14
Thermal Diffusivity, mm2/s 2.9
110
Thermal Shock Resistance, points 22 to 25
7.8 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
99.84 to 99.966
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0
Residuals, % 0
0 to 0.1