MakeItFrom.com
Menu (ESC)

Nickel 684 vs. 2011A Aluminum

Nickel 684 belongs to the nickel alloys classification, while 2011A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 684 and the bottom bar is 2011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11
6.8 to 16
Fatigue Strength, MPa 390
75 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 710
190 to 250
Tensile Strength: Ultimate (UTS), MPa 1190
310 to 410
Tensile Strength: Yield (Proof), MPa 800
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1370
660
Melting Onset (Solidus), °C 1320
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 10
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 360
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
20 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 1610
140 to 670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 40
28 to 37
Strength to Weight: Bending, points 30
33 to 40
Thermal Shock Resistance, points 34
14 to 18

Alloy Composition

Aluminum (Al), % 2.5 to 3.3
91.5 to 95.1
Bismuth (Bi), % 0
0.2 to 0.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 20
0
Cobalt (Co), % 13 to 20
0
Copper (Cu), % 0 to 0.15
4.5 to 6.0
Iron (Fe), % 0 to 4.0
0 to 0.5
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 42.7 to 64
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.5 to 3.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15