MakeItFrom.com
Menu (ESC)

Nickel 685 vs. Grade 9 Titanium

Nickel 685 belongs to the nickel alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 685 and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
11 to 17
Fatigue Strength, MPa 470
330 to 480
Poisson's Ratio 0.29
0.32
Reduction in Area, % 20
28
Shear Modulus, GPa 77
40
Shear Strength, MPa 770
430 to 580
Tensile Strength: Ultimate (UTS), MPa 1250
700 to 960
Tensile Strength: Yield (Proof), MPa 850
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 1000
330
Melting Completion (Liquidus), °C 1380
1640
Melting Onset (Solidus), °C 1330
1590
Specific Heat Capacity, J/kg-K 460
550
Thermal Conductivity, W/m-K 13
8.1
Thermal Expansion, µm/m-K 12
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 75
37
Density, g/cm3 8.4
4.5
Embodied Carbon, kg CO2/kg material 10
36
Embodied Energy, MJ/kg 140
580
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
1380 to 3220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 42
43 to 60
Strength to Weight: Bending, points 31
39 to 48
Thermal Diffusivity, mm2/s 3.3
3.3
Thermal Shock Resistance, points 37
52 to 71

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
2.5 to 3.5
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0 to 0.080
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 2.8 to 3.3
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0.020 to 0.12
0
Residuals, % 0
0 to 0.4