MakeItFrom.com
Menu (ESC)

Nickel 686 vs. SAE-AISI 1095 Steel

Nickel 686 belongs to the nickel alloys classification, while SAE-AISI 1095 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is SAE-AISI 1095 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 51
10 to 11
Fatigue Strength, MPa 410
310 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 560
400 to 540
Tensile Strength: Ultimate (UTS), MPa 780
680 to 900
Tensile Strength: Yield (Proof), MPa 350
500 to 590

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1380
1450
Melting Onset (Solidus), °C 1340
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 9.8
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 170
19
Embodied Water, L/kg 300
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
63 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 280
660 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 24
24 to 32
Strength to Weight: Bending, points 21
22 to 26
Thermal Diffusivity, mm2/s 2.6
13
Thermal Shock Resistance, points 21
22 to 29

Alloy Composition

Carbon (C), % 0 to 0.010
0.9 to 1.0
Chromium (Cr), % 19 to 23
0
Iron (Fe), % 0 to 5.0
98.4 to 98.8
Manganese (Mn), % 0 to 0.75
0.3 to 0.5
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0