MakeItFrom.com
Menu (ESC)

Nickel 693 vs. 2025 Aluminum

Nickel 693 belongs to the nickel alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
15
Fatigue Strength, MPa 230
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 440
240
Tensile Strength: Ultimate (UTS), MPa 660
400
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 9.1
150
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 9.9
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
55
Resilience: Unit (Modulus of Resilience), kJ/m3 250
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 23
37
Strength to Weight: Bending, points 21
40
Thermal Diffusivity, mm2/s 2.3
58
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
90.9 to 95.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0 to 0.1
Copper (Cu), % 0 to 0.5
3.9 to 5.0
Iron (Fe), % 2.5 to 6.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0.5 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15