MakeItFrom.com
Menu (ESC)

Nickel 693 vs. 5154 Aluminum

Nickel 693 belongs to the nickel alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
3.4 to 20
Fatigue Strength, MPa 230
100 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
140 to 210
Tensile Strength: Ultimate (UTS), MPa 660
240 to 360
Tensile Strength: Yield (Proof), MPa 310
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 9.9
8.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 250
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 23
25 to 37
Strength to Weight: Bending, points 21
32 to 42
Thermal Diffusivity, mm2/s 2.3
52
Thermal Shock Resistance, points 19
10 to 16

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
94.4 to 96.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0.15 to 0.35
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 2.5 to 6.0
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15