MakeItFrom.com
Menu (ESC)

Nickel 693 vs. 5652 Aluminum

Nickel 693 belongs to the nickel alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
6.8 to 25
Fatigue Strength, MPa 230
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
110 to 170
Tensile Strength: Ultimate (UTS), MPa 660
190 to 290
Tensile Strength: Yield (Proof), MPa 310
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1310
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 9.1
140
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 9.9
8.6
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 250
40 to 480
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 23
20 to 30
Strength to Weight: Bending, points 21
27 to 36
Thermal Diffusivity, mm2/s 2.3
57
Thermal Shock Resistance, points 19
8.4 to 13

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
95.8 to 97.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0.15 to 0.35
Copper (Cu), % 0 to 0.5
0 to 0.040
Iron (Fe), % 2.5 to 6.0
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 1.0
0 to 0.010
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15