MakeItFrom.com
Menu (ESC)

Nickel 693 vs. A360.0 Aluminum

Nickel 693 belongs to the nickel alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 34
1.6 to 5.0
Fatigue Strength, MPa 230
82 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 440
180
Tensile Strength: Ultimate (UTS), MPa 660
180 to 320
Tensile Strength: Yield (Proof), MPa 310
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
530
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
680
Melting Onset (Solidus), °C 1310
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 9.1
110
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 9.9
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 23
19 to 34
Strength to Weight: Bending, points 21
27 to 39
Thermal Diffusivity, mm2/s 2.3
48
Thermal Shock Resistance, points 19
8.5 to 15

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
85.8 to 90.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0 to 0.6
Iron (Fe), % 2.5 to 6.0
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 53.3 to 67.5
0 to 0.5
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25