MakeItFrom.com
Menu (ESC)

Nickel 693 vs. AISI 429 Stainless Steel

Nickel 693 belongs to the nickel alloys classification, while AISI 429 stainless steel belongs to the iron alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is AISI 429 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 230
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 440
300
Tensile Strength: Ultimate (UTS), MPa 660
480
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 1010
810
Melting Completion (Liquidus), °C 1350
1440
Melting Onset (Solidus), °C 1310
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 9.1
26
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 60
7.5
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 9.9
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
99
Resilience: Unit (Modulus of Resilience), kJ/m3 250
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 2.3
6.9
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0 to 0.12
Chromium (Cr), % 27 to 31
14 to 16
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
81.8 to 86
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 1.0
0