MakeItFrom.com
Menu (ESC)

Nickel 693 vs. ASTM A229 Spring Steel

Nickel 693 belongs to the nickel alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
14
Fatigue Strength, MPa 230
710 to 790
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 440
1020 to 1140
Tensile Strength: Ultimate (UTS), MPa 660
1690 to 1890
Tensile Strength: Yield (Proof), MPa 310
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
400
Melting Completion (Liquidus), °C 1350
1450
Melting Onset (Solidus), °C 1310
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 9.1
50
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 250
3260 to 4080
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
60 to 67
Strength to Weight: Bending, points 21
40 to 43
Thermal Diffusivity, mm2/s 2.3
14
Thermal Shock Resistance, points 19
54 to 60

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0.55 to 0.85
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
97.5 to 99
Manganese (Mn), % 0 to 1.0
0.3 to 1.2
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 1.0
0