MakeItFrom.com
Menu (ESC)

Nickel 693 vs. EN 1.0225 Steel

Nickel 693 belongs to the nickel alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
6.7 to 24
Fatigue Strength, MPa 230
170 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
280 to 290
Tensile Strength: Ultimate (UTS), MPa 660
440 to 500
Tensile Strength: Yield (Proof), MPa 310
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
400
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 9.1
52
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
16 to 18
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 2.3
14
Thermal Shock Resistance, points 19
14 to 16

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0 to 0.21
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
98 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.4
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0 to 1.0
0