MakeItFrom.com
Menu (ESC)

Nickel 693 vs. EN 1.1170 Steel

Nickel 693 belongs to the nickel alloys classification, while EN 1.1170 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
16 to 17
Fatigue Strength, MPa 230
220 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
390 to 450
Tensile Strength: Ultimate (UTS), MPa 660
640 to 730
Tensile Strength: Yield (Proof), MPa 310
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
400
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 9.1
50
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
2.1
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 250
290 to 670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
23 to 26
Strength to Weight: Bending, points 21
21 to 23
Thermal Diffusivity, mm2/s 2.3
13
Thermal Shock Resistance, points 19
20 to 23

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0.25 to 0.32
Chromium (Cr), % 27 to 31
0 to 0.4
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
96.7 to 98.5
Manganese (Mn), % 0 to 1.0
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 53.3 to 67.5
0 to 0.4
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 1.0
0