MakeItFrom.com
Menu (ESC)

Nickel 693 vs. EN AC-51200 Aluminum

Nickel 693 belongs to the nickel alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 230
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 660
220
Tensile Strength: Yield (Proof), MPa 310
150

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 9.1
92
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 9.9
9.6
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
31
Thermal Diffusivity, mm2/s 2.3
39
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
84.5 to 92
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 2.5 to 6.0
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 53.3 to 67.5
0 to 0.1
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 2.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 1.0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15