MakeItFrom.com
Menu (ESC)

Nickel 693 vs. CC140C Copper

Nickel 693 belongs to the nickel alloys classification, while CC140C copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 660
340
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1350
1100
Melting Onset (Solidus), °C 1310
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 9.1
310
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 9.9
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
34
Resilience: Unit (Modulus of Resilience), kJ/m3 250
220
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
10
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 2.3
89
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0.4 to 1.2
Copper (Cu), % 0 to 0.5
98.8 to 99.6
Iron (Fe), % 2.5 to 6.0
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0