MakeItFrom.com
Menu (ESC)

Nickel 693 vs. Grade 18 Titanium

Nickel 693 belongs to the nickel alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
11 to 17
Fatigue Strength, MPa 230
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 440
420 to 590
Tensile Strength: Ultimate (UTS), MPa 660
690 to 980
Tensile Strength: Yield (Proof), MPa 310
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 1010
330
Melting Completion (Liquidus), °C 1350
1640
Melting Onset (Solidus), °C 1310
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 9.1
8.3
Thermal Expansion, µm/m-K 13
9.9

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 9.9
41
Embodied Energy, MJ/kg 140
670
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1380 to 3110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 23
43 to 61
Strength to Weight: Bending, points 21
39 to 49
Thermal Diffusivity, mm2/s 2.3
3.4
Thermal Shock Resistance, points 19
47 to 67

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.5 to 6.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4